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pyDTNsim provides a simulation environment that allows the simulation of arbitrary Delay Tolerant Networking
(DTN) scenarios on a packet level. pyDTNsim provides users with the ability to evaluate the performance of vari-
ous routing approaches and to detect possibly occurring overload situations. Currently, the focus lies on deterministic
Contact-Graph-based routing approaches, but there might be other approaches available in the future. The clear mod-
ularization allows users to easily implement routing approaches on their own.
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CHAPTER 1

Contents

1.1 Installation

Depending on the intended use case, the installation procedure for the library differs. If the library modules should
only be invoked by custom scripts, installing pyDTNsim via the Python package index PyPi is sufficient. If the
simulation modules have to be altered, downloading the source code and installing pyDTNsim as editable python
module is required.

1.1.1 Module Dependencies

The following modules are used in various contexts of pyDTNsim. However, some are only necessary for the devel-
opment of the module and not for running simulations.

Python Mod-
ule

Li-
cense

Purpose Dev?1

networkx BSD Library allows the export of networkx DiGraph objects for additional
graph analyses.

tqdm MIT Used for displaying the simulation progress (i.e. elapsed simulated seconds).
jsonschema MIT Validation of JSON schemes in the loaded topology files.
pytest MIT Used for running the modules unit tests. Only executed in CI, not integrated

otherwise.
x

sphinx BSD Generation of this documentation. Not invoked by the module. x
sphinx_rtd_theme MIT Theme for sphinx. x
pylint GPL Tool for detecting source code issues. Only executed in CI, not integrated

otherwise.
x

pydocstyle MIT Tool for validating docstrings in source code. x
termcolor MIT Provides colorful shell output when testing the examples of the module. x

pyDTNsim uses new Python features, in particular

1 Modules with ‘Dev?’ checked are only relevant in the development context of this module.
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• Data Classes (3.7),

• Formatted String Literals (3.6) and

• Insertion-Order Preservation of items added to a dict object. (3.7).

Therefore, Python 3.7+ is currently required for using this library.

Note: It is planned to establish compatibility with older versions (especially 2.7) in the future.

1.1.2 PyPi Installation

The latest version of pyDTNsim can be installed with pip3:

$ pip3 install pydtnsim

Thats it, pip3 will download the module from PyPi and install it locally. Check if the module was installed correctly
by invoking a Python shell and importing the module:

> import pydtnsim

If no error occurs, the installation was successful. Continue with the with the section Getting started with pyDTNsim.

1.1.3 Source Code Installation

Alternatively, the module can be made available in the local Python instance by downloading it from Github and then
installing it as editable package.

This more advanced installation is necessary when the library module (or parts of it) have to be altered. For example,
this is the case if contributing to the module is intended.

Archive Download and Extraction

The source can be downloaded as .zip or .tar.gz archive.

In Linux, the download and extraction of the files can usually also be achieved using the utilities wget and tar:

$ wget https://github.com/ducktec/pydtnsim/archive/master.tar.gz
$ tar -xzf master.tar.gz
$ cd pydtnsim-master/

Git Clone

If the version-control system git is installed, the project can also be cloned:

$ git clone https://github.com/ducktec/pydtnsim.git
$ cd pydtnsim/
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Module Installation

Warning: Please store the pydtnsim/ source code folder in an appropriate (long-term) directory on your local
device. As we are installing the module as editable, the Python environment will continuously reference the files
directly instead of copying them to hidden internal folders. Moving the directory around after the installation will
likely result in broken references and errors!

As next step, the module can be made available in the Python environment:

$ pip install -e "."

pip3 installs the module as editable (achieved with the parameter -e) and tries to satisfy all core dependencies (see
above dependency table).

If all development dependencies1 shall be installed, the [dev] specifier has to be added to the installation command:

$ pip install -e ".[dev]"

Check if the module was installed correctly by invoking a Python shell and importing the module:

> import pydtnsim

If no error occurs, the installation was successful. Continue ith the section Getting started with pyDTNsim.

Tip: A recommendation in general, but a must in the context of upstream development is the use of the environ-
ment wrappers pyenv (for the version of the Python interpreter) and pipenv (for the Pip package environment). The
configuration files for pipenv are provided (Pipfile and Pipfile.lock) and contain also the requirements for
pyenv.

In combination, the wrappers ensure a sound and deterministic development environment for all developers by in-
stalling clearly specified versions and encapsulating them from the other python (package) installations on the systems.
An article outlining the benefits of the wrappers can be found at2.

1.2 Getting started with pyDTNsim

With pyDTNsim installed, we can start with running simulations using the library. In this section, a hands-on intro-
duction into the features and the instrumentation procedure of the library module will be provided.

The goal of this introduction is to simulate the simple intermittently connected network topology as depicted below
and to generate key characteristics of this simulation run.

1.2.1 Simulation Scenario

The following network topology shall be simulated for 1000 seconds:

The annotations at the arrows represent available contact between the two (physical) network nodes that an arrow is
connecting in mathematical interval notation in seconds. All contacts are considered to allow for a transmission of
data with 100 KBps.

2 https://hackernoon.com/reaching-python-development-nirvana-bb5692adf30c?gi=26b62f02bc0b
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Note: The propagation delays are considered neglible in this scenario. This is in line with the current configuration
of pyDTNsim which is not supporting (individual or global) delays at the moment.

The nodes A and C are representing “active” endpoints which are both continuously inserting packets of 100 KB
with a data generation rate of 10 KBps, addressed at node A and C respectively. The data generation will continue
throughout the entire simulation period.

Node B is functioning as intermediary node that is solely forwarding packets received from A and B. It is neither the
destination of any packets nor is it injecting any packets.

Contact Graph Routing (CGR) will be used as routing mechanism. See Routing Mechanisms for more details on
provided mechanisms and their implementation.

The characteristics that should be acquired with the simulation run are

• the overall average delivery time of all delivered packets during the simulation run,

• the number of packets enqueued into the limbo (i.e., packets that could not be scheduled for transmission with
CGR) and

• a histogram of the average delivery time of all delivered packets throughout the simulation run.

1.2.2 Creating a simulation script

As pyDTNsim is a library module, we have to create a simulation script ourselves to leverage the invoke the module’s
functionality.

Just create a new python script file with your favorite editor or type

touch dtn_simulation.py
vim dtn_simulation.py

With the script created, we can now start to import the libraries components. We start with creating a pydtnsim.
simulator.Simulator object. This object represents the event-oriented simulation environment that keeps track
of the simulations components and is later invoked for the actual simulation run. Details about the abstract concept of
the simulation environment can be found in Architecture Overview.

The Simulator can then be used to perform a simulation using it’s member function Simulator.
run_simulation(). For now, it is sufficient to provide this function with the simulation duration in milliseconds.
It will then run a simulation from 0 ms to that provided parameter.

The following code snippet shows the most basic simulation script using the Simulator class. Please add this
snippet to your script file.

from pydtnsim import Simulator

def main():
"""Simulate basic scenario."""
# Create simulation environment
simulator = Simulator()

# Run the simulation for 1000 seconds (1000000 ms)
simulator.run_simulation(1000000)

if __name__ == "__main__":
main()

6 Chapter 1. Contents
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As no nodes or contacts were added to the Simulator object, nothing has to be simulated. When running the script,
the output is as follows:

1 > python3 dtn_simulation.py
2 Running simulation for 1000000 ms ...
3 Simulation completed!
4 Simulation Results:
5 - total number of packets generated: 0
6 - total number of packets enqueued in limbos: 0
7 - total number of packets enqueued in contacts: 0

Hooray, that was the first “successful” pyDTNsim simulation run! We didn’t actually simulate any network but we
can change that by adding simulation elements in the next step.

But first, let’s have a look at the output provided by the Simulator object: besides the message that the simulation
was completed the output also provides some simple statistics about the performed simulation run in lines (5-7). In
our case, no packets were generated and subsequently, no packets remained in limbos or contacts at the end of the
simulation run.

1.2.3 Adding simulation elements

In order to not just simulate empty scenarios, we now have to add (active and passive) simulation elements to the
simulation environment. In particular, two elements have to be represented in the environment: physical network
nodes (e.g., SimpleCGRNode) and contacts in between those nodes (Contact).

Note: Both classes/objects referenced in the paragraph above are exemplary. Depending on the simulated routing
mechanisms, the instantiated network node objects have to vary (and might even have to be implemented oneself
for novel routing concepts). An opportunistic routing approach might have differing processing requirements both in
terms of gathered knowledge at the physical nodes and the forwarding behavior during node contacts.

Warning: With the development focus of this simulation environment having been CGR, the generalization in
terms of applicable routing mechanisms has not been fully implemented in this area of the application. For now,
only CGR implementations are provided and no abstract parent class exists for the easy adoption with other routing
approaches. This improvement will likely be implemented in the near future.

For the simulation elements including their helper classes, we need to add the following imports:

from pydtnsim import ContactPlan, ContactGraph, Contact
from pydtnsim.nodes import SimpleCGRNode
from pydtnsim.routing import cgr_basic
from pydtnsim.packet_generators import ContinuousPacketGenerator

The imported objects will be explained in the following paragraphs.

Network Topology

As the network node need to be aware about the network topology since we are using CGR (Contact Graph Routing)
as routing mechanism, we have to provide such information during the instantiation.

We provide the topology knowledge as a ContactGraph object. This object represents the topology as a time-
invariant graph and can be easily generated from a ContactPlan object. This object holds the same information as

1.2. Getting started with pyDTNsim 7
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the ContactGraph, but is easier to understand and modify for humans. More details on the reasoning behind the
ContactPlan and the ContactGraph in the context of CGR is provided in Contact Graph Routing.

As outlined before, we first create the ContactPlan (line 2). The parameters provided during the instantiation are
the default data rate in bits per millisecond (10 bits per millisecond, i.e. 10 KBps) and the default propagation delay
in milliseconds (50 ms).

Warning: The propagation delay is currently not factored in when simulating networks. The interface for provid-
ing such information is already implemented, but the simulation logic is not implemented yet. This is future work,
so for now, the propagation delay is always neglected.

1 # Generate empty contact plan
2 contact_plan = ContactPlan(10, 50)
3

4 # Add the contacts
5 contact_plan.add_contact('node_a', 'node_b', 0, 100000)
6 contact_plan.add_contact('node_a', 'node_b', 500000, 750000)
7 contact_plan.add_contact('node_b', 'node_c', 0, 200000)
8 contact_plan.add_contact('node_b', 'node_c', 350000, 400000)
9 contact_plan.add_contact('node_b', 'node_c', 950000, 990000)

In lines 5 to 9, the contacts based on our previously outlined scenario are added to the contact_plan object using
ContactPlan.add_contact(). The parameters are

• the source node,

• the destination node,

• the start time in milliseconds and

• the end time in milliseconds.

As no additional optional parameters for the data rate and the delay were provided, the default values of the
contact_plan object are used.

Finally, we can simply convert the filled ContactPlan object into a ContactGraph object:

# Convert contact plan to contact graph
contact_graph = ContactGraph(contact_plan)

Contacts

The contacts available in between network nodes throughout the simulation are simulated using the Contact object.
These objects are an integral part of the simulation environment as they are one of two active generator elements that
drive the simulation (and generate events, hence the name). Contacts are activated upon their contact start time and
then perform handover operations from one node to another during their time active. At the end of a handover of a
packet to another node, the routing mechanism on that other node is called to determine the future forwarding.

With the information about the contacts already being available in the contact_plan object of the previous step,
we can iterate over that information to generate our Contact objects:

1 # Generate contact objects and register them
2 for planned_contact in contact_plan.get_contacts():
3 # Create a Contact simulation object based on the ContactPlan
4 # information
5 contact = Contact(planned_contact.from_time, planned_contact.to_time,

(continues on next page)
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(continued from previous page)

6 planned_contact.datarate, planned_contact.from_node,
7 planned_contact.to_node, planned_contact.delay)
8 # Register the contact as a generator object in the simulation
9 # environment

10 simulator.register_contact(contact)

In addition to the instantiation of the contacts in lines 5 to 7, in line 10, the respective contact also has to be registered
with the simulation environment. This is to allow the simulation environment to call the contact upon its start time.

Network Nodes

With the topology information available in the correct format, we can add the network nodes. For all three nodes,
we will use SimpleCGRNode as representation in the simulation environment. Again, we can use the contact_plan
object that we instantiated and filled earlier to gather the relevant information for the instantiation:

1 # Generate network node objects and register them
2 for planned_node in contact_plan.get_nodes():
3 # Generate contact list of node
4 contact_list = contact_plan.get_outbound_contacts_of_node(planned_node)
5 # Create a dict that maps the contact identifiers to Contact simulation
6 # objects
7 contact_dict = simulator.get_contact_dict(contact_list)
8 # Create a node simulation object
9 SimpleCGRNode(planned_node, contact_dict, cgr_basic.cgr, contact_graph,

10 simulator, [])

In line 2, we get a list of all network nodes in the topology using ContactPlan.get_nodes(). We then iterate
over this list and create the individual nodes:

1. We first have to get a list of all outbound nodes that the individual network node has. This is done calling
ContactPlan.get_outbound_contacts_of_node().

2. This list is then used to get a contact_dict from the Simulator object. As this object is aware of all
contacts and their registered instantiations, it can map the textual list entries of the outbound contacts from the
previous step to actual Contact objects. So by calling Simulator.get_contact_dict(), we get a
dict mapping a contacts identifier to the instantiation in the simulation context.

3. With the contact_dict available, we can instantiate the actual network node object as SimpleCGRNode
with the following parameters:

• the node identifier (e.g. node_a),

• the contact_dict,

• the routing mechanism’s main function cgr_basic.cgr,

• the topology information (in this case as ContactGraph object) and

• the Simulator object.

Packet Generators

Finally, we have to add packet generators that are injecting packets into the simulated network. Without them, re-
gardless of the specified topology, no packets would be forwarded and thus, no non-trivial network behavior would be
simulated.

1.2. Getting started with pyDTNsim 9
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Currently, there two different packet generators provided in the simulation environment, the
BatchPacketGenerator and the ContinuousPacketGenerator. Both are children of the parent
BasePacketGenerator.

The injection behavior of the two generators is depicted in the following figure:

The BatchPacketGenerator injects a specified number of packets at specified points in time whereas the
ContinuousPacketGenerator injects packets continuously throughout the simulation period with a defined
generation data rate.

Depending on the scenario, one of them might be used for the simulation conducted. Alternatively, an own generator
can be implemented based on the BasePacketGenerator.

For our scenario, we will use the ContinuousPacketGenerator to inject packets for the routes node_a ->
node_c and node_c -> node_a at a specified data generation rate of 10 KBps and with a packet size of 100 KB:

1 # Generate packet generator 1 and register them
2 generator1 = ContinuousPacketGenerator(
3 10, # Data Generation Rate: 10 Bytes per ms
4 100000, # Packet Size: 100 KB
5 ['node_a'], # From 'node_a'
6 ['node_c'], # To 'node_c'
7 0, # Start injection at simulation time 0s
8 1000000) # End injection at simulation end (1000s)
9

10 # Generate packet generator 2 and register them
11 generator2 = ContinuousPacketGenerator(
12 10, # Data Generation Rate: 10 Bytes per ms
13 100000, # Packet Size: 100 KB
14 ['node_c'], # From 'node_c'
15 ['node_a'], # To 'node_a'
16 0, # Start injection at simulation time 0s
17 1000000) # End injection at simulation end (1000s)
18

19 # Register the generators as a generator objects in the simulation
20 # environment
21 simulator.register_generator(generator1)
22 simulator.register_generator(generator2)

Warning: The implementation of the packet generator configuration is currently requiring the instantiation of
two distinct generators to accomplish the bidirectional injection of packets between node_a <-> node_c.
This will be changed in a future release (likely v0.3.0).

Warning: Also, the registration procedure for the generators is currently inconsistent with the other simulation
elements. Therefore, a consistent registration procedure will be established in a future release as well.

Two generators have to be instantiated, one for the injection of packets traveling from node_a to node_c and one for
the reverse direction from node_c to node_a.

The two instantiations in lines 2 to 8 and 11 to 17 are provided with several parameters:

• the data generation rate,

• the packet size,

10 Chapter 1. Contents
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• a list of (string) node identifiers identifying all source nodes that the generator should inject packets with
the given parameters and data rate,

• a list of (string) node identifiers identifying all destination nodes that the generator should address packets
to with the given parameters and data rate,

• the injection start time (in ms absolute to the simulation start time) and

• the injection end time (in ms absolute to the simulation start time).

With list’s used for identifying source and destination nodes, the the generator injects for every element of the
source node list packets with the given characteristics and rates to all elements of the destination node list. This
injection scheme is also depicted in the following diagram:

With the two generators instantiated an configured, we have to register them with the simulation environment. This is
done in lines 21 and 22.

We now have all simulation elements in place and can run the simulation again. If you don’t want to copy all code
snippets from this documentation, you can also download the file created up to this point of the tutorial at this
link.

If we run this extended script, we get the following output:

1 > python3 dtn_simulation_elements.py
2 Running simulation for 1000000 ms ...
3 Simulation completed!
4 Simulation Results:
5 - total number of packets generated: 198
6 - total number of packets enqueued in limbos: 165
7 - total number of packets enqueued in contacts: 0

You can see that the generators properly generated packets and injected them into the network. The number of gener-
ated packets seems about right: with the configuration provided, the generators inject a packet to the (single) destina-
tion every 10 seconds. With 1000 seconds being simulated, this results in 99 injected packets per generator and 198
in total. As the simulation ends when 1000s is reached (excluding the termination value), the 100th packet of each
generator that would be due at time 1000s is not added.

Also, we can see in line 6, that only a fraction of the injected packets is actually forwarded and 165 of the 198 packets
are enqueued in one of the nodes’ limbos. A limbo is a queue that holds packets that cannot be forwarded to their
destination nodes based on the available topology information. Every node has a limbo that is used for such packets.

Note: The number of “discarded” packets can be directly attributed to the selected topology, the contact times and
the nodes configuration (including the injection rates) and does not represent an (programming) error.

As our contact plan has the same validity period as our simulation duration, no packets should remain scheduled in
contacts after the simulation end. This is the case as can be seen in line 7.

Warning: If the validity period of topology information exceeds the simulated period (e.g., a 1 hour simulation
is conducted with a contact plan containing the computed contacts for 48 hours), packets can remain enqueued in
future (i.e., beyond the simulation end time) contacts and will appear in the simulation results summary (in our
example in line 7).

In this section, we successfully simulated our specified simulation scenario. We even got some bits of information
about what happened during the simulation (e.g., that a large number of packets was at some point enqueued into a
node’s limbo).

1.2. Getting started with pyDTNsim 11
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However, usually when running a network simulation (especially in the academic context), more detailed analyses and
key values are required. The next section will cope with the monitoring interface of pyDTNsim that allows for an
extraction of arbitrary such values.

1.2.4 Monitoring of the Simulation

1.2.5 Running a Simulation

1.2.6 Post Processing and Evaluation

1.3 Examples

1.4 Simulation Scenario Setup

1.5 Routing Mechanisms

With pyDTNsim, the behavior of various routing mechanisms can be simulated. The currently implemented mecha-
nisms are outlined in the next chapters:

1.5.1 Contact Graph Routing

1.6 Simulation Monitoring

1.7 Simulation Data Processing

1.8 pydtnsim package

1.8.1 Subpackages

pydtnsim.backend package

Submodules

pydtnsim.backend.qsim module

Module contents

pydtnsim.monitors package

Submodules

pydtnsim.monitors.base_monitor module

12 Chapter 1. Contents
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pydtnsim.monitors.monitor_notifier module

Module contents

pydtnsim.nodes package

Submodules

pydtnsim.nodes.simple_cgr_node module

Module contents

pydtnsim.packet_generators package

Submodules

pydtnsim.packet_generators.base_packet_generator module

pydtnsim.packet_generators.batch_packet_generator module

pydtnsim.packet_generators.continuous_packet_generator module

Module contents

pydtnsim.routing package

Submodules

pydtnsim.routing.cgr_anchor module

pydtnsim.routing.cgr_basic module

pydtnsim.routing.cgr_utils module

pydtnsim.routing.dijkstra module

pydtnsim.routing.scgr module

1.8. pydtnsim package 13
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Module contents

1.8.2 Submodules

1.8.3 pydtnsim.contact module

1.8.4 pydtnsim.contact_graph module

1.8.5 pydtnsim.contact_plan module

1.8.6 pydtnsim.packet module

1.8.7 pydtnsim.simulator module

1.8.8 Module contents

1.9 Architecture Overview

1.10 Development Guide
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• modindex
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